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Abstract: NMR residual dipolar couplings have great potential to provide rapid structural information for
proteins in the solution state. This information even at low resolution may be used to advantage in proteomics
projects that seek to annotate large numbers of gene products for entire genomes. In this paper, we describe
a novel approach to the structural interpretation of dipolar couplings which is based on structural motif pattern
recognition, where a predefined gapless structural template for a motif is used to search a set of residual
dipolar couplings for good matches. We demonstrate the applicability of the method using synthetic and
experimental data. We also provide an analysis of the statistical power of the method and the effects of order
tensor frame orientation, motif size, and structural complexity on motif detection. Finally, we discuss remaining
problems that must be overcome before the method can be used routinely to identify protein homologies.

Introduction

Although there has been an explosion of genomic DNA
sequence data in the past few years, these data can be fully
utilized only if the proteins corresponding to the putative genes
can be properly functionally annotated.1 Unless the sequence
homology is relatively high, such annotation cannot be per-
formed reliably in the absence of structural information. This
has led to the recent interest in the development of “structural
genomics” for the identification of function.2 Both of the
standard methods for high-resolution protein structure determi-
nation, X-ray crystallography and NMR spectroscopy, have
bottlenecks which make them difficult to apply in a high-
throughput manner. One of the principle rate-limiting steps in
NMR structure determination is the sequential assignment of
side-chain proton resonances and the assignment of NOESY
cross-peaks to particular side-chain resonances. These steps are
considerably more difficult and time-consuming than the
sequential assignment of chemical shifts along the peptide
backbone, for which relatively robust automated methods
already exist.3 Therefore, it would be desirable to have a method
for obtaining reliable structural information based on the smallest
possible additional data collection beyond that needed for the
backbone resonance assignments. Several candidate data types
exist, including the backbone chemical shifts themselves,4,5

scalar couplings,5 cross-correlated relaxation rates,6 and residual
dipolar couplings.7

Of these, residual dipolar couplings are of particular interest
in that they require relatively little data collection time and

provide considerable structural information through their de-
pendence on the orientation of internuclear vectors relative to
an order frame.7 The development of a variety of orienting media
(such as lipid bicelles and filamentous phage) has greatly
increased the practicality of such measurements in recent years,
and the use of residual dipolar couplings as a supplement to
NOEs and scalar couplings in the refinement of high-resolution
NMR solution structures of macromolecules is becoming
increasingly routine.8 The application of residual dipolar
couplings to the structural genomics problem is only just
beginning. For example, Annila et al.9 investigated the pos-
sibility of fold recognition via dipolar couplings by qualitatively
comparing the pattern of residual dipolar coupling as a function
of primary sequence between closely related calcium-binding
proteins. More recently, Meiler et al.10 extended this idea by
quantitatively fitting structural models of entire proteins to
dipolar coupling data using a scaledø2 statistic as a quality
factor. Delaglio et al.11 developed a tool for searching the Protein
Data Bank (PDB) for seven-residue fragments consistent with
local residual dipolar coupling patterns. They showed that an
appropriately chosen subset of such fragments that together span
the entire data set can be used as a starting point for an
optimization procedure to obtain moderate-resolution structural
models for the entire protein.

We describe here a method for pattern recognition in residual
dipolar couplings targeted at the detection of protein structural
motifs ∼20 residues in length using a minimal amount of
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residual dipolar coupling data (e.g., amide N-HN couplings
only). Our method, however, is not limited to amide couplings,
and data from additional internuclear vectors may be readily
incorporated. Critical to our method and in contrast to previous
work, we show how the use of a statistical measure appropriate
to this pattern recognition problem greatly facilitates the analysis.
Such a measure can be formulated in terms of the tail probability
(or “p value”) under a null hypothesis and is similar to measures
of statistical significance used in amino acid sequence align-
ment.12 The motif size regime used here is smaller than the units
previously studied by Annila et al.9 (>100 residue) and Meiler
et al.10 (30-100 residues), but larger than the 7-residue units
used by Delaglio et al.11 Our choice of this size regime was
motivated by the fact that structural motifs of biological interest
often are in this size range (e.g., helix-turn-helix DNA-
binding13 and EF-hand Ca2+-binding domains14), by our con-
jecture that suitably chosen gapless motifs of this size range
will be more characteristic of given fold families than shorter
segments, and by results which indicate that smaller sizes may
not provide sufficient statistical signal for motif recognition.
We present results for two test systems demonstrating the
effectiveness of the methodology. Our first example demon-
strates the detection of a helix-turn-helix (HTH) motif in ideal
synthetic N-HN residual dipolar coupling data. In our second
example, we demonstrate the detection of a 20-residue template
characteristic of the “ubiquitin-related” SCOP superfamily15 in
the experimental ubiquitin N-HN residual dipolar coupling data
obtained by Ottiger and Bax.16

Theory and Methods

A residual dipolar coupling associated with a given inter-
nuclear vector is related to the orientation of that vector relative
to an order tensor and is given by

whereDa is a constant that depends on the internuclear distance
and the gyromagnetic ratios of the spins involved,R (0 e R e
2/3) is a measure of the asymmetry of the order tensor, andθ
andφ are spherical angles that relate the internuclear vector to
the principal axis system (PAS) of the order tensor.7 Alterna-
tively, one can rewrite eq 1a in the form

whereDij are the elements of a symmetric and traceless matrix
proportional to the Saupe order tensor17,18 in an arbitrary
molecular frame defined by the directions cosinesx, y, andz of
the internuclear vectors relative to that frame. Since eq 1b is
linear in the tensor elementsDij, it is possible to solve for the
optimalDij’s that maximize the agreement between a set of bond
vector orientations and the dipolar coupling data using a
computationally efficient linear least-squares procedure.18 Specif-

ically, one can find values for five independentDij ’s that
minimize the quantity

whereDi (i ) 1, ...,N) areN g 5 measured dipolar couplings,
and theN × 5 matrix M is a function of the corresponding
direction cosines in the molecular frame. The best-fit solution
can be found by constructing the pseudoinverse ofM using
singular value decomposition.18 It is therefore straightforward
to fit an order tensor for each∼20-residue stretch of dipolar
couplings to a motif template structure, back-calculate the best-
fit dipolar couplings, and calculate aø2 statistic

whereDcalc, i and Dobs, i are the back-calculated best-fit and
experimental residual dipolar coupling data for theith residue
in the template, and the indexi runs over all residues in the
template for which data are available. Previous work of Meiler
et al.10 aimed at fold recognition using dipolar couplings has
made use of a scaledø2 statistic (namely, eq 3 divided by the
sum of the squares of the observed dipolar couplings) to assess
goodness of fit. We show below that while this is an improve-
ment over the simpleø2 statistic of eq 3, an even more sensitive
statistical measure can be formulated.

Since residual dipolar couplings for fixed-length internuclear
vectors depend only on their orientations and contain no
translational information,19 it is useful to have measures of
structural similarity based only on vector orientations. One can
define an angular equivalent of the RMSD superposition of two
structures by recognizing that a direction cosine can be
represented as a point on the surface of a three-dimensional
unit sphere. The set of bond vectors for two structures to be
compared is then two ordered lists of points on the unit sphere,
and one can use a standard rigid-body superposition algo-
rithm20,21 to find the rotation that minimizes the mean-square
distance between corresponding “pseudoatoms”. The degree of
structural similarity can then be described by an angular
similarity parameter

whereµi
(j) is the unit vector in the direction of bond vectori in

structurej after best-fit superposition. For any given structure,
one can also construct a matrixA with elementsAij ) |µi‚µj|,
which can be thought of as the angular counterpart of the
commonly used distance matrix (e.g., ref 22) (Figure 1). Like
the distance matrix, the angle matrixA is an internal coordinate
representation and is independent of the choice of molecular
frame. The use of absolute values is appropriate for purposes
of the dipolar coupling problem since dipolar couplings are

(12) Durbin, R.; Eddy, S.; Krogh, A.; Mitchison, G.Biological Sequence
Analysis: Probabilistic Models for Proteins and Nucleic Acids; Cambridge
University Press: Cambridge, 1998.

(13) Wintjens, R.; Rooman, M.J. Mol. Biol. 1996, 262, 294-313.
(14) Ikura, M.Trends Biochem. Sci.1996, 21, 14-17.
(15) Murzin, A. G.; Brenner, S. E.; Hubbard, T.; Chothia, C.J. Mol.

Biol. 1995, 247, 536-540.
(16) Ottiger, M.; Bax, A.J. Am. Chem. Soc.1998, 120, 12334-12341.
(17) Saupe, A.Angew. Chem., Int. Ed. Engl.1968, 7, 97-112.
(18) Losonczi, J. A.; Andrec, M.; Fischer, M. W. F.; Prestegard, J. H.J.

Magn. Reson.1999, 138, 334-342.

(19) It should be noted that dipolar couplings are also sensitive to internal
motions.7 For purposes of this paper, we assume that these effects are smaller
than those due to structural differences between the template and the protein
which generated the data.

(20) Kabsch, W.Acta Crystallogr. A1976, 32, 922-923.
(21) Kabsch, W.Acta Crystallogr. A1978, 34, 827-828.
(22) Holm, L.; Sander, C.J. Mol. Biol. 1993, 233, 123-138.

D ) Da[(3 cos2θ - 1) + 3/2Rcos2φ sin2θ] (1a)

D ) (x y z)(Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz
)(xyz) (1b)

||(M )(Dyy

Dzz

Dxy

Dxz

Dyz

)- (D1

D2

l
DN

)|| (2)

ø2 ) ∑
i

(Dcalc,i - Dobs,i)
2 (3)

〈cosθ〉 )
1

N
∑
i)1

N

µi
(1)‚µi

(2) (4)

Protein Structural Motif Recognition J. Am. Chem. Soc., Vol. 123, No. 6, 20011223



invariant with respect to inversion (i.e., substitution of-x, -y,
and-z for x, y, andz in eq 1b leavesD unchanged).

To test our methodology, we generated synthetic amide
N-HN residual dipolar couplings for all nonproline residues in
the purine repressor structure 2PUE:A (which contains an HTH
motif at residue 4) calculated using eq 1 and tensor magnitudes
Da ) 5.0 andR ) 0.2. The PAS of the order tensor was
arbitrarily chosen to be the Cartesian axis system of the PDB
file. A set of five 18-residue template HTH structures (1B0N:
A(17-34), 1LCC:A(6-23), 1LMB:3(33-50), 1NEQ(25-42),
and 1RPE:R(17-34)) was also chosen. These are members of
the “434 cro” and “lac repressor” HTH families as defined by
Wintjens and Rooman.13 The CR distance RMSDs between them
and the 2PUE:A HTH motif are 0.9, 0.5, 0.5, 1.0, and 0.6 Å,
respectively, while the corresponding angular similarity param-
eters are 0.97, 0.96, 0.98, 0.90, and 0.98, respectively. These
fragments were used as structural templates for searching dipolar
coupling data for windows that match to a high statistical
significance.

To demonstrate the effectiveness of our methodology using
experimental data, we made use of the ubiquitin N-HN residual
dipolar coupling data obtained by Ottiger and Bax.16 As a
template, we chose a 20-residue fragment of elongin B 1VCB:
A(25-44); the template was identified by searching for the
segments of that length in each of five representative members

of the “ubiquitin-related” SCOP superfamily15 (1UBQ, 1VCB:
A, 1A5R, 1NDD:A, 1BT0) which minimizes the mean-square
deviation between the elements of the corresponding submatrices
of the angle matricesA in each pair of structures. The CR
distance RMSD for 1VCB:A(25-44) and the corresponding
position in 1UBQ (residues 24-43) is 0.6 Å, while the angular
similarity parameter is 0.96. All calculations were performed
using only amide N-HN bond vector directions, which were
chosen to lie in the plane and along the bisector of the Ci-1-
Ni-CRi bond angle. Template positions corresponding to proline
residues were assigned fictitious N-HN bond vector directions
calculated in the same manner.

Results and Discussion

Structural Motif Recognition via p Values. One way in
which we can attempt to recognize a structural motif in residual
dipolar coupling data is to find the best-fitDij parameters for
theN-residue template and eachN-residue window in the data
and calculate the resultingø2. The result of such a calculation
for the purine repressor data and the 1RPE:R(17-34) template
is shown as the solid curve in Figure 2. Although the correct
motif location does give rise to a lowerø2 value, there are also
many other regions that are not structurally related but give
comparably smallø2 values (e.g., the 18-residue window
beginning at residue 193). We can significantly improve on this

Figure 1. Angle matrices A describing the relative orientations of amide N-HN bond vectors in (A) the HTH motif 2PUE:A(4-21), (B) the HTH
motif 1RPE:R(17-34) used as a motif template, (C) the window 2PUE:A(39-56), which has angular similarity to an HTH and which gives rise
to the false positive in Figure 4a, and (D) the window 2PUE:A(193-210), which gives rise to data that fits the 1RPE:R(17-34) template with a
small ø2 (see Figure 2), but which is nonetheless statistically insignificant (see Figure 3). Each element of this matrix corresponds to the absolute
value of the dot product between the unit vectors along N-HN bonds for each pair of residues in the fragment, with (anti)parallel N-HN bond
vector pairs indicated by white squares and perpendicular pairs by black.
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result by recognizing thatø2 alone does not constitute a measure
of statistical significance but, in general, must be compared to
its distribution under an appropriate null hypothesis (just as the
significance of a Smith-Waterman sequence alignment can be
determined by comparing a raw score to an extreme value
distribution12). For some problems (e.g., when the null hypoth-
esis is that the data were generated by a known linear model
plus Gaussian noise), this is not necessary, since the distribution
of the ø2 statistic scaled by the variance of the noise depends
only on the number of degrees of freedom and not on the data
values themselves.23 In such a case, one can rank order and
compare the goodness of fit of different data sets of the same
length by comparing theirø2 values directly, without having to
compare them to the distribution ofø2 under the null hypothesis.

For the protein structural motif detection problem, the
situation is quite different. Here, we consider the data to match
a motif template if theø2 for a fit to the 18-residue template is
much smaller than might be expected for a fit to a protein
fragment chosen at random. To represent this null hypothesis,
we constructed a database of direction cosines from 1500 and
20 000 18-residue fragments randomly chosen from the SCOP40
database24 and calculated theø2 of the fit of each 18-residue-
long data window to each structure in the 1500-fragment
database, resulting in a distribution ofø2 values for each data
window. The dashed line in Figure 2 is the mean minus 1.5
times the standard deviation of that distribution as a function
of window position, and the histograms in Figure 3 show the
shape of these distributions for two windows (residues 4-21
and residues 193-210). Unlike in the familiar “ø2 test” described
above, the null hypothesis appropriate to the motif recognition

problem results in distributions ofø2 that depend not only on
the number of dipolar couplings but also on their values. For
example, the dipolar couplings of residues 193-210 have less
information content, in the sense that they are much more likely
to be fit well by a randomly chosen protein fragment, than the
data for residues 4-21. Therefore, the statistical significance
of the fits of the HTH template (as shown by the arrows) is
quite different for the two segments, even though bothø2 values
are similarly small. There is a large variability in the information
content of different stretches of dipolar couplings, and this

(23) Press: W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.
Numerical Recipes in C: The Art of Scientific Computing; Cambridge
University Press: Cambridge, 1992.
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Sci. U.S.A.1998, 95, 6073-6078.

Figure 2. Plot of theø2 goodness of fit (solid line) of each 18-residue segment of the synthetic residual dipolar coupling data for 2PUE:A to the
HTH motif template 1RPE:R(17-34) used to search the dipolar coupling data. The dotted line represents the mean minus 1.5 times the standard
deviation of the distribution ofø2 for the fits of the data and 1500 18-residue-long peptide fragments drawn with a uniform probability from the
PDB coordinates of all domains in the SCOP40 database.24

Figure 3. Comparison of the distribution of theø2 statistic for the fit
of two 18-residue segments of the synthetic purine repressor residual
dipolar couplings (residues 4-21 in open boxes and residues 193-
210 in shaded boxes) to the 20 000 random 18-residue-long fragments
described in Figure 2. Theø2 values of the 1RPE:R template to the
dipolar couplings are shown by the arrows (open and shaded for 4-21
and 193-210, respectively).
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variability must be taken into account to properly interpret the
ø2 values of the fit to the template.

The statistical significance of the fit of a given segment of
dipolar couplings to a motif template can be quantitatively
expressed as ap value, which is the probability that aø2 as
small or smaller than that observed for the template could have
been obtained by chance from a population of random protein
structures or, equivalently, as the odds against the null hypoth-
esis, which can be thought of as the relative probability that a
given data window is a match to the template (Figure 4). The
purine repressor data (Figure 4A) shows two strong “hits” to
the 1RPE:R(17-34) template. One of these corresponds to the
true HTH signal at position 4, and the best-fitDa andR values
agree well with those used to generate the data. We see no other
hits with significance within 1 order of magnitude of the true
HTH, except for position 39, which is still at least a factor of
2 smaller than the match to the true HTH at window position
4. In the ubiquitin example (Figure 4B), we obtain only one

very strong hit, which is in the correct location and has best-fit
tensor magnitudes comparable to those estimated by Ottiger and
Bax.16 No other hits within 2 orders of magnitude of the true
positive are observed.

The hit at position 39 in the purine repressor example (Figure
4A) demonstrates some of the structural ambiguities inherent
in the use of only N-HN residual dipolar couplings. The
structure of 2PUE:A(39-56) consists of two helical fragments
joined by an extended coil and is quite different from an HTH
in terms of backbone conformation (CR RMSD ≈ 7 Å).
However, if we consider only the relative orientations of the
amide N-HN bonds, this structure is similar to that of 1RPE:
R(17-34), as can be seen by comparing the angle matrices in
Figure 1B and C or the angular similarity parameters of residues
4-21 and 39-56 relative to 1RPE:R(17-34) (Table 1). For
the fit of 1RPE:R(17-34) to 2PUE:A(4-21) 〈cosθ〉 ) 0.978,
while for the corresponding fit to 2PUE:A(39-56) 〈cosθ〉 )
0.720. The decreased angular similarity parameter reflects the
very different amide bond vector orientations for a limited
number of residues, e.g., template positions 8, 9, and 11 (Table
1). The extent to which these structural differences affect the
fits to the dipolar couplings depends in part on the orientation
of the PAS relative to the structures. Therefore, it is possible
that data generated using different PAS orientations relative to
2PUE:A might not give equally strong hits at this location. We
show below that this is in fact the case. In contrast, the angular
similarity parameter for residues 193-210 of 2PUE:A (for
which the fit is not statistically significantssee Figures 2 and
3) relative to 1RPE:R(17-34) is much smaller (Table 1), and
we see no strong signal at this position for any PAS orientation.

The size of the template can have a major impact on the
ability to recognize a structural motif. To investigate this, we
compared the results obtained using the same data (synthetic
data for 2PUE:A,Da ) 5, R ) 0.2) with a full 18-residue HTH
template 1RPE:R(17-34) versus a truncated version of the
template consisting of the central nine residues 1RPE:R(22-
30). The resulting relative probabilities of a match differ
significantly: there is no longer a strong signal at the true HTH
location for the truncated template, and the relative probabilities

Figure 4. Plots of the relative probability of a match) (1 - p)/p (in
log scale) as a function of the position of the data window for (A) the
synthetic purine repressor data (Da ) 5, R ) 0.2) to the 1RPE:R HTH
template and (B) the experimental “charged bicelle” data for ubiquitin
obtained by Ottiger and Bax.16 The analogous results for the “uncharged
bicelle” data are qualitatively identical and are not shown. Estimates
of thep values were initially performed using a 1500-fragment database
generated from SCOP40 as described in the text; window positions
resulting in p < 0.01 were re-estimated using a 20 000-fragment
database constructed in the same manner. Theø2 of the template at
position 4 for the purine repressor was smaller than any of the 20 000
fragments in the database, and the plotted value represents a lower
bound. The best-fitDa andRvalues for each hit with relative probability
of a match greater than 1000 are indicated.

Table 1. Rigid-Body Superposition of N-HN Direction Cosines
for 1RPE:R(17-34) and Three 18-Residue Windows of 2PUE:A

cosines of the angles between corresponding
N-HN directionsaposition in

window 2PUE:A(4-21) 2PUE:A(39-56) 2PUE:A(193-210)

1 0.949 0.917 0.670
2 0.989 0.906 0.931
3 0.998 0.871 0.701
4 0.993 0.832 0.587
5 0.996 0.911 0.983
6 0.972 0.597 0.636
7 0.971 0.691 0.604
8 0.993 -0.263 0.915
9 0.984 0.411 0.764

10 0.984 0.968 0.745
11 0.962 0.103 -0.894
12 0.997 0.802 0.427
13 0.987 0.990 0.379
14 0.937 0.847 0.445
15 0.953 0.733 0.360
16 0.966 0.785 0.620
17 0.985 0.876 0.710
18 0.988 0.989 -0.269

〈cosθ〉 0.978 0.720 0.517

a Positions corresponding to proline residues were assigned fictitious
N-HN bond vector directions based on the Ci-1-Ni-CRi coordinates
as described in Theory and Methods.
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of a match over all window positions are generally lower. This
is because it is easier to fit a shorter data window with a
randomly chosen structure, and one must have a correspondingly
smaller templateø2 to obtain a highly significant match. For
moderately longer templates, the distributions ofø2 for random
structures shift away from zero more than the templateø2 for
the true HTH window, increasing its statistical significance.
Further increases in the template length will make it harder to
fit the template with a lowø2, causing the statistical significance
to decrease again. Thus, we expect that for the motif recognition
procedure we propose there is an optimal template length for a
given protein structural motif. This will be the subject of a future
communication.

Structural Information Content and PAS Orientation .
Figures 2 and 3 demonstrate that different windows in a given
set of residual dipolar couplings contain varying degrees of
structural information and that this information content is
reflected in the distribution of theø2 statistic from fits of data
to many randomly chosen protein fragments. We expect,
however, that this structural information content will vary not
only due to differences in the structure but also with changing
orientations with respect to the PAS. One way to visualize these
relative contributions is to calculate the mean of theø2 statistic
for a given data window (normalized by the number of data in
the window) for fits to a large number (> 1000) of protein
fragments chosen at random for many data sets synthesized
using different PAS orientations (100 in our case). The means
and standard deviations of the resulting mean normalizedø2

values then give a measure of the variability in structural
information content intrinsic to the structure giving rise to the
data and the variability for any given structure due to PAS
orientation effects, respectively. In Figure 5, we show the results
of such a calculation for data generated from 2PUE:A using
18-residue windows for 100 different PAS orientations.

Although there is a good deal of variability in the mean
normalizedø2 as a function of PAS orientation (as indicated
by the error bars), it is clear that some regions tend to have
larger mean normalizedø2 values than other regions. For
example, the mean normalizedø2 for the window beginning at
residue 193 shows a variability of∼4 Hz2 centered around a

mean of 8 Hz2, while the window beginning at residue 175 has
a comparable variability (3 Hz2), but centered around a mean
of 14 Hz2. Therefore, some regions of 2PUE:A are inherently
more difficult to fit and therefore likely to generate more
structurally informative data (from the perspective of NMR
dipolar couplings) than others even after accounting for the
variability arising from different PAS orientations. These
differences are related to the protein structure in those regions,
as is demonstrated by comparing the structure of 2PUE:A in
the residue windows 4-21 and 39-56 (for which the mean
normalizedø2 tends to be large, Figure 1A and C) with the
residue window 193-210 (for which the mean normalizedø2

tends to be small, Figure 1D). The difference is quite striking:
windows 4-21 and 39-56 have a much greater diversity of
amide vector orientations than window 193-210, where, due
to the presence of anR-helix from residues 191 to 206, all of
the amide vectors are nearly parallel to each other. Residue
window 193-210 is not unique in this respect: there is in fact
a very strong correlation between the starting residues of longer
R-helices and the minima in the mean normalizedø2 curve, as
can be seen in Figure 5.

This result has implications for the optimal choice of template
in our motif-based approach. The less structural complexity a
given structural fragment has (i.e., the closer its distribution of
ø2 values for random fragments is to zero), the harder it will be
to find a statistically significant match, since such a match would
require a correspondingly smaller templateø2. Therefore, in
choosing templates for structural motif recognition using dipolar
couplings, one would like to find those that are maximally
conserved among members of a given class (e.g., SCOP
superfamily) and that at the same time have the maximal
structural complexity (as measured by the mean of the mean
normalizedø2 over many PAS orientations). The mean normal-
izedø2 calculation is straightforward to do for any set of proteins
of interest, and the results can be taken into consideration when
designing templates for structural motif recognition.

False Positive/Negative Rates and PAS Orientation. We
can estimate the effectiveness of the protein structural motif
recognition using NMR dipolar coupling data by calculating
the rate of false positives and false negatives at various
significance thresholds over many different data sets. Ideally,
one would like to perform such an analysis for many different
templates, target proteins, and order tensor parameters. We
report here the results of a more limited study of false positive/
false negative rates for five structurally similar templates and
data calculated using one target protein for many different PAS
orientations. Specifically, we generated synthetic data for
2PUE:A as above for 100 different orientations of the PAS
relative to the protein coordinates. For a given template and
any given threshold for the relative probability of a matchT,
we estimate the false negative rate to be the fraction of rotations
for which the true HTH (window position 4) gives a relative
probability of a match less thanT and the false positive rate to
be the fraction of window positions (other than at position 4)
over all rotations that give a relative probability of a match
greater thanT. We can then plot the false negative rate versus
the false positive rate parametrically as a function ofT from T
) ∞ (false positive rate) 0, false negative rate) 1) to T ) 0
(false positive rate) 1, false negative rate) 0). Such a curve
calculated using residual dipolar coupling data generated from
2PUE:A and fit using the 1RPE:R(17-34) template is shown
as the solid curve in Figure 6. The result is quite encouraging:
using a threshold of 1000, we can achieve a false positive rate

Figure 5. Plot of the mean (solid line) and standard deviation (error
bars) of the distribution of mean normalizedø2 values for each 18-
residue window of data generated from 2PUE:A using 100 different
PAS orientations fit by more than 1000 fragments chosen at random
from the SCOP40 database. The locations indicated by the arrows
represent the window positions corresponding to the start of 10-residue
or longer helices in the 2PUE crystal structure.
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of less than 0.3% while still identifying more than 90% of the
true positives.

The distribution of the false positives over window positions
at a significance threshold of 1000 is shown in Table 2. These
results have implications with respect to how much information
might be gained by collecting additional data for the same target
protein in different ordering media (i.e., with different values
of R and PAS orientation). It has been recognized in the
literature that collection of two or more data sets with different
PAS orientations can reduce the structural ambiguities inherent
in residual dipolar couplings.25,26 Table 2 suggests that the
additional information that could be obtained from a small
number of data sets with different PAS orientations is quite
significant for the motif recognition approach as well. One
would expect the most “added value” from multiple-PAS data
sets to occur when the false positives are evenly distributed
throughout the protein, and the least for cases where the false
positives are completely dominated by one window position.
For 2PUE:A vs 1RPE:R(17-34), the false positives are not
dominated by one window and are on the whole relatively well-

dispersed throughout the protein. If this is characteristic for other
templates and targets, then we can expect a relatively high
“added value” from multiple-PAS data sets.

In practice, we might wish to construct a “basis set” of
templates that encompass the known structural variability of a
given motif of interest, since we would not know a priori which
is the optimal template. To investigate this, we repeated
the search for the HTH motif using four other templates
(1B0N:A(17-34), 1LCC:A(6-23), 1LMB:3(33-50), 1NEQ-
(25-42), all members of theλ-repressor SCOP superfamily)
in addition to 1RPE:R(17-34), and constructed a “consensus”
profile of the relative probabilities of a match as follows: for
each window we use the result of the template that gives the
smallestp value (or the lowestø2, since its distribution under
the null hypothesis is constant for any given window). This is
a reasonable procedure if we assume that each template is a
priori an equally good model for an HTH. One can then use
this consensus profile to calculate a false positive/false negative
curve as a function ofT as above. The result is shown as the
dashed line in Figure 6. Although the false positive rate has
gone up slightly as expected (based on the increase in “degrees
of freedom”), it is still possible to obtain a false positive rate
of less than 1% and still identify the true HTH more than 90%
of the time, which strongly suggests thatp value-based motif
recognition can be practical for structural proteomics.

We can also construct a false positive/false negative curve
based on theø2 statistic alone by defining a “hit” to be any
window with a normalizedø2 statistic smaller than a threshold
T′. This allows us to directly compare the statistical power of
our p value approach with one based on theø2 statistic. The
resulting false positive/false negative curves for the consensus
fit is shown as the dot-dashed line in Figure 6 and shows that
a ø2-based motif recognition strategy is significantly less
powerful than one based on thep value. It should be noted that
previous workers10 have made use of the “Q factor” statistic,
which is equal toø2 divided by the sum of the squares of the
data (originally proposed by Cornilescu et al.27 in analogy to
the X-ray crystallographicR factor). We have found that this
scale factor is approximately proportional to the mean of the
ø2 statistic for a given set of data over many randomly chosen
protein structures and that this can be regarded as a first-order
correction to the simpleø2 statistic.

Conclusions

We have shown that amide N-HN residual dipolar couplings
can be used to reliably detect and locate protein structural motifs
consisting of gapless templates∼20 residues in length and that
such a strategy represents a viable approach to the structural
interpretation of residual dipolar couplings that differs from
those currently in use. The structural information content and
discriminatory ability of the data vary quite strongly; we account
for this by formulating a suitable measure of statistical
significance for the fit of the template motif to the target dipolar
couplings. The results are quite encouraging: we can obtain
90% identification of the true positive with a less than 1%
chance per window position of a false positive. Nonetheless,
this error rate may not be sufficiently robust for application of
this method on a genomic scale. For example, given a novel
protein with 100 data window positions, even at a 0.3% false
positive rate there is still a 26% chance that there will be at
least one false positive and a 50% chance at a 0.7% false positive
rate. It should be noted that these probabilities increase strongly

(25) Ramirez, B. E.; Bax, A.J. Am. Chem. Soc.1998, 120, 9106-9107.
(26) Al-Hashimi, H. M.; Valafar, H.; Terrell, M.; Zartler, E. R.; Eidsness,

M. K.; Prestegard, J. H.J. Magn. Reson.2000, 143, 402-406.
(27) Cornilescu, G.; Marquardt, J. L.; Ottiger, M.; Bax, A.J. Am. Chem.

Soc.1998, 120, 6836-6837.

Figure 6. Plots of false positive vs false negative rates as a function
of thresholdT for (1 - p)/p or T′ for the normalizedø2 estimated from
100 synthetic data sets generated from 2PUE:A using different PAS
orientations andDa ) 1 andR ) 0 as described in the text. The solid
curve corresponds to the 1RPE:R template, the dashed line corresponds
to a “consensus” based on the five HTH templates 1B0N:A, 1LCC:A,
1LMB:3, 1NEQ, and 1RPE:R, and the dot-dashed line corresponds
to the “consensus” based on theø2 statistic alone.

Table 2. Distribution of False Positives (Non-HTH Positions with
Relative Probabilities of a Match Greater than 1000) for 2PUE:A
Synthetic Data and 1RPE:R(17-34) Template

window position(s)

no. of false positives
out of 100 PAS

orientations

fraction (%) of total
false positives observed

(out of 66 total)

39 16 24
208 12 18
19 7 11
276 6 9
67 4 6
54 3 5
36, 107, 268 2 each (6) 9
38, 65, 83, 153, 169,

170, 211, 223, 254,
265, 280, 303

1 each (12) 18

total 66 100
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with false positive rate: a 3% false positive rate (such as we
obtain using the “consensus” method using theø2 statistic alone)
would result in a 95% chance of at least one false positive, a
situation that would be extremely difficult to tolerate in practice.

The false positive rates that we observe can be decreased
further by the use of additional information. In our examples,
we have only made use of the information inherent in the amide
N-HN dipolar couplings. However, for each window position
we obtain not only aø2 andp value but also values of the best-
fit order tensor magnitudesDa and R. One can test for the
consistency of theseDa and R values with rough estimates
derived from the distribution of dipolar couplings over the entire
protein.28 Furthermore, if the target protein is already13C-
labeled, collection of additional residual dipolar couplings

associated with other internuclear vectors does not represent a
large investment of resources and may also substantially reduce
the false positive rate. Backbone chemical shifts and the amino
acid sequence itself provide considerable information about the
secondary structure, which could be used to reduce error rates
still further. We are currently investigating these possibilities,
as well as performing more comprehensive analyses of the
statistical power and radius of convergence of the method and
exploring a variety of ways in which this methodology could
be applied to practical problems in structural biology and
proteomics.
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